9/11 Acquisition Reform Advertising Alaway Alcohol Ale Allergies Antisemitism Barack H. Obama Beer Billiards Biology Books Budget Bureaucracy California Capitalism Carbohydrates Carcinogen CDC Chemical Warfare Chemistry Chemophobia Chirality Climate Science Colonial Pines Computers Conservation Laws Constitution Consumerism Cosmology CPT Invariance Creationism Customer Service Daesh David Irving Dead End Defense Dinosaurs Disasters Economic Energy English Ethics Evolution Fluoride Food FTL Garden Care George W. Bush Gerlich and Tscheuschner GISS Glaciers GMOs HadCRU Haiti Health Himalayan Rock Salt HITRAN Holocaust Denial Home Brewing How It Looks From Here html Humor Information Infrared Spectroscopy IPCC Iran ISIS Islam Islamophobia Israel Ketotifen Fumarate Law Lawn Care Leibniz Lisbon Magnetism Math Medco Medicine Modeling Molecules Monopoly Monsanto Naphazoline hydrochloride Neutrinos Nietzsche NIH NIST Noether's Theorem Non-hazardous Norton Ghost Nuclear Warfare Oil Oil Spill Olopatadine hydrochloride Opinion Orson Scott Card Parody Pataday Patanol Pesticides Pheneramine maleate Physics Plumbing Politics Poll Pope POTUS Prescriptions Prop 65 Psychology Quantum Mechanics Quiz Racism Radiative Transfer Relativity Religion Respiration Senior Housing Signs Smoking Specific Gravity Statistics Stock Market Sugars Sun Tzu Surface Temperature Surgeon General Symantec Target Temperature Terrorism The Final Solution The Holocaust History Project Thermodynamics Time Trains Units Voltaire von Clausewitz Weather White House Wine Yeast

Friday, November 12, 2010


This post is part of a series,Nonsense and the Second Law of Thermodynamics The previous post is entitled Entropy and Statistical Dynamics.

The second law of thermodynamics works because of the statistics of very large numbers. Consider a bouncing ball: as it bounces, it dissipates heat and eventually does not bounce as high.  

Saturday, November 6, 2010

Entropy and Statistical Thermodynamics

This post is part of a series, Nonsense and the Second Law of Thermodynamics. The previous post is entitled The Second Law and Swamp Coolers.

A previous post discusses the macroscopic thermodynamic definition of entropy, but there is another, statistical way of describing entropy.  Consider an isolated macroscopic system of interacting molecules.  Without knowing much about what is going on with the individual molecules, it is possible to measure macroscopic thermodynamic properties such as the pressure, the temperature etc.

                                                                                         (Figure Source)

Consider that the system is isolated; so that the total energy of the entire system of molecules is a constant.  Energy is free to move from one molecule to another, and each molecule has multiple electronic, vibrational, rotational, and translational energy states that it could be in.  There are many distinguishable ways that the system could be arranged to achieve the this energy.